Tag: innovazione

  • Albo esperti innovazione tecnologica – Brazil 2026?

    Albo esperti innovazione tecnologica – Brazil 2026?

    L’Albo degli Innovatori Certificati del Ministero del Made in Italy è un trionfo monumentale della burocrazia italiana e quanto di meno innovativo esista: un perfetto simulacro di un formulario cartaceo degli anni ’90.

    Per iscriversi a questo albo, che dovrebbe certificare i paladini della modernizzazione industriale, bisogna affrontare un modulo Microsoft Forms che è un capolavoro di tecnologia all’avanguardia. [Modulo Iscrizione] Niente SPID, niente autenticazioni digitali: solo un interminabile rosario di caselline da spuntare, dove ci si assume la responsabilità della veridicità dei dati che dobbiamo diligentemente digitare.

    Ma è nei dettagli che la fulgida innovazione ministeriale rivela tutta la sua grandezza. Le province? Niente menu a tendina per i pigri: vanno scritte a mano, rigorosamente con due caratteri. Sì, devi digitare manualmente “PA”, “BO”, “MI” come se gli impiegati dei catasti di provincia degli anni 90, perché evidentemente l’idea di una semplice lista predefinita sarebbe troppo disruptive per un albo dedicato all’innovazione.

    Le date, poi, sono un vero inno alla praticità: non sognarti di digitare semplicemente “30/11/1973”. Devi aprire un pannello e scorrere anno per anno, mese per mese, giorno per giorno, come se stessi sfogliando un innovativo calendario da tavolo degli anni 80: un’esperienza così innovativa che solo chi ha padroneggiato le meccaniche di un cubo di Rubik potrebbe eseguirla senza maledire la propria esistenza.

    Ma il tocco di assoluta genialità è rappresentato dalla richiesta di indicare, senza possibilità di appello, la data in cui prevedi di andare in pensione.

    Sono rimasto senza parole, poiché non ho mai veramente capito che il vero esperto innovatore deve avere la capacità di predire con esattezza matematica il momento in cui appenderà la penna al chiodo. Non importa se hai trent’anni (più o meno l’età dell’innovatore medio) e non sai dove sarai domani: per potere certificare la tua capacità di innovazione e iscriverti nell’apposito Albo, per il MIM.IT è essenziale sapere che conosci la data del tuo pensionamento.

    Pensavi che fosse finita? No… Il meglio viene alla fine di questo colossale test di resistenza, il sistema ti informa che puoi stampare una copia della domanda (a giudicare da tutto il processo mi chiedo se fanno proprio così al ministero. Cioè stampano la domanda e la mettono in una apposita cartellina cartonata che finisce fisicamente impilata alle altre sulla scrivania di un solerte funzionario per l’approvazione? Aspetta come si chiamava il film geniale di Gilliam? Ah si! “Brazil“…). Dopo aver sudato sette camicie per inserire manualmente ogni singolo dato con i vincoli di un codice medievale, l’ultimo atto rituale è tornare alla carta. Perché, si sa, nessuna domanda è veramente valida finché non ha preso la forma di un foglio pronto per essere infilato in una cartellina e che poi verrà diligentemente timbrato.

    E tutto questo per cosa? Per soddisfare un requisito imprescindibile: possedere una laurea. Una laurea tecnica dici? No, va bene qualsiasi laurea, il formulario prevede: farmacia, restauro (anche di beni culturali), gestione dei flussi turistici: tutto perfettamente valido.

    I sistemi ministeriali si concludono infine con un cerchio talmente perfetto da essere quasi commovente: per accedere ai finanziamenti pubblici della transizione digitale, come previsto dal solenne Decreto Direttoriale n. 3125 del 12 novembre 2025, dovete essere rappresentati da un manager iscritto a questo albo. Un albo che esclude i più grandi innovatori della storia, ad esempio non potrai mai trovare persone come un certo Steve Jobs, che a quanto pare ha fatto innovare un paio di cosette, o Bill Gates, che forse avrà combinato qualcosa con i computer. Tecnicamente nemmeno Luigi Di Maio, che ha avuto l’ardire di gestire questo ministero per oltre un anno senza il necessario tesserino universitario.

    Però se hai una laurea in restauro di beni culturali o gestione dei flussi turistici… cambia tutto, puoi accedere ai finanziamenti per l’innovazione.


    L’Albo degli Innovatori Certificati del MIM.IT dimostra, ancora una volta, che nel nostro Paese la competenza in materia di innovazione si riduce al possesso di un titolo di laurea e alla capacità di compilare un modulo, che verrà successivamente stampato e timbrato.

    Un sistema così elegantemente contraddittorio che persino il suo stesso nome suona come una beffa.

  • Quando l’AI smette di indovinare e inizia a certificare

    Quando l’AI smette di indovinare e inizia a certificare

    Conosci Perplexity (perplexity.ai)? Se la risposta è no, allora dovresti.

    Perplexity è brillante!

    Se lo usi per lavoro, la scena è questa: fai una domanda, in pochi secondi arriva una risposta fluida, ben scritta, piena di riferimenti. Ed é tutto perfetto…

    Perplexity, rispetto ai soliti chatbot, ha una marcia in più: orchestra più LLM, sceglie (o prova a scegliere) il modello più adatto, collega fonti diverse.

    È un ottimo laboratorio di idee. Ma è un laboratorio senza registro di laboratorio: non sai quali modelli ha usato, in che ordine, con quali criteri. E soprattutto non hai un modo semplice per rifare lo stesso percorso tra un mese, o farlo rifare a un collega, ed ottenere un risultato costante e ripetibile.

    Allo scoccare del quarto anno di GenAi, la domanda oggi è: “quanto costa il fatto di non poter certificare il processo che ha portato a quella risposta?”.


    Perplessità e canonicità: due facce della stessa storia

    La scienza vive da sempre su una tensione fra due poli.

    Da una parte c’è la perplessità: il dubbio, le ipotesi, la curiosità che apre piste nuove. È la fase in cui Perplexity è fortissimo: ti mostra fonti diverse, prospettive in conflitto, ti fa vedere che “forse qui qualcosa non torna”.

    Dall’altra c’è la canonicità: quello che diventa metodo, protocollo, standard. Non è la verità assoluta, ma un “con questo protocollo, su questi dati, arriviamo a questa conclusione, con questo grado di confidenza. Sempre”.

    In questo schema, Perplexity è il motore della domanda. Manca però il motore del metodo.

    Se sei un professionista non puoi chiedere ad un unico modello di “fare tutto”, ma hai la necessità di costruire una piccola squadra di modelli, ognuno con un ruolo preciso, legati da un flusso che puoi spiegare e rifare.


    Non sono il solo a sostenerlo, qualche tempo fa Andrej Karpathy ha scritto che il futuro non è il prompt engineering, ma la context engineering: riempire la finestra di contesto con le informazioni giuste, nello step giusto, per il modello giusto.

    Karpathy, la “context engineering” e il terzo pilastro

    Le applicazioni serie di LLM, dice, non sono “un’interfaccia carina sopra un modello”, ma software veri, con flussi di controllo, chiamate orchestrate, memoria, strumenti, verifiche.

    È esattamente quello che ho chiamato pipeline prompting nel mio manifesto:
    – prima la scomposizione in step;
    – poi la specializzazione dei modelli per compito;
    – infine il filo di continuità, cioè come il contesto passa da uno step all’altro.


    Canonity: dai prompt ai protocolli

    Quale nome dare all’editor dove prende forma il pipeline prompting?.

    Canonity.

    Non è il posto dove “parli con l’AI”: è il posto dove decidi come le AI devono lavorare fra loro su un problema reale.

    Canonity nasce esattamente qui: non come “un altro chatbot”, ma come editor visivo di step-prompt.

    Invece di un mega-prompt che speri venga interpretato bene, costruisci un workflow:

    • uno step scompone la domanda in sotto-problemi;
    • un altro cerca, ma restituisce solo metadati strutturati (DOI, anno, tipo di studio…);
    • un terzo valuta la qualità degli studi e segnala bias;
    • un quarto sintetizza, usando solo le fonti che superano una certa soglia;
    • alla fine ci sei tu, che controlli, correggi, approvi.

    Ogni passaggio è esplicito, ogni modello fa il pezzo di lavoro per cui è più adatto, il flusso ha un ID, una versione, una storia.

    Non stai più “giocando al prompt perfetto”: stai scrivendo un protocollo che altri possono usare, criticare, migliorare e4 che da risultati ripetibili ad ogni esecuzione.


    Perché “Canonity” richiama “Perplexity”, ma fa un mestiere diverso

    Il gioco di nomi è ovvio.

    Perplexity richiama la perplessità, il dubbio fertile, l’esplorazione. È perfetto quando vuoi generare idee, esplorare lo spazio di possibilità, farti sorprendere.

    Canonity richiama il canone: ciò che diventa riferimento, metodo, standard. Entra in gioco quando devi dire: “Questo è il modo in cui abbiamo affrontato il problema; questi sono gli step, i modelli, le fonti escluse e perché”.

    Se fai ricerca, se lavori in sanità, in ambito legale, in policy pubblica, non ti basta “me l’ha detto l’AI”. Hai bisogno di una catena di custodia dell’informazione. È questo il passaggio: dall’AI-oracolo all’AI-strumento scientifico.

    Adottare uno strumento come Canonity significa cambiare ruolo: da utente di AI a orchestratore di AI, da prompter a tenmpo perso a professionista: non vendi più “prompt” o “ore di chat”, ma processi: come definisci il problema, come scomponi il lavoro, quali modelli usi, quali controlli applichi.


    E adesso?

    Canonity è in sviluppo attivo e lo stiamo testando con chi ha questo problema molto concreto: non gli basta più una risposta brillante, vuole un metodo che possa difendere davanti a un revisore, un cliente, un comitato etico.

    Se sei uno dei 22 milioni di utilizzatori (o meglio uno degli 8 milioni di utilizzatori a pagamento) di Perplexity e senti che ti manca il “registro di laboratorio”, tieni d’occhio quello che succede intorno a Canonity e al pipeline prompting.

    Perché la partita, ormai, non è più “chi ha il modello più intelligente”, ma chi ha il processo più trasparente e ripetibile.

  • Perché con l’IA in Medicina stiamo sbagliando bersaglio

    Perché con l’IA in Medicina stiamo sbagliando bersaglio

    Una recente ricerca di Anthropic ha rivelato un fatto che dovrebbe far riflettere chiunque si occupi di intelligenza artificiale: bastano 250 documenti “avvelenati” – una frazione infinitesimale, lo 0,00016% di un dataset – per sabotare il comportamento di un grande modello linguistico.

    Questo fenomeno, il cui nome è data poisoning, dimostra una verità matematica spietata: la qualità di un’IA è intrinsecamente legata all’integrità dei dati su cui si allena. Basta una quantità minuscola di dati sbagliati per corrompere il tutto.

    Ora, facciamo un salto dalla sicurezza informatica alla salute pubblica.

    Se l’introduzione di una manciata di dati tossici può essere così devastante, immaginate l’effetto catastrofico dell’assenza totale di una massa enorme di dati veri e puliti.

    È esattamente quello che sta succedendo oggi all’IA in medicina.

    Il “Data Poisoning” Invisibile della Sanità

    Mentre Anthropic testava quanto sia facile avvelenare un dataset, il nostro sistema sanitario sta inconsapevolmente commettendo un errore opposto ma altrettanto pericoloso: sta morendo di fame.

    Gli algoritmi che promettono di rivoluzionare la diagnostica sono addestrati quasi esclusivamente sui dati digitali dei grandi ospedali. Ma questo rappresenta solo una parte della storia clinica.

    Dov’è il restante 20-30%?
    È quel paziente dimesso dall’ospedale con una diagnosi incompleta che trova la soluzione in un ambulatorio territoriale. È quella diagnosi corretta, arrivata dopo settimane di esami mirati, che svanisce nel mare della carta di uno studio non digitalizzato.

    Questo non è un semplice buco, è un’avvelenamento per assenza.
    Stiamo costruendo un’IA “zoppa”, addestrata su una realtà clinica mutilata. Se bastano 250 documenti corrotti per deviare un modello, l’assenza di milioni di diagnosi corrette dal territorio rende l’IA medica intrinsecamente inaffidabile e pericolosamente parziale.

    La soluzione è curare la fonte o il sintomo?

    Il problema non è la tecnologia IA ma la catena di approvvigionamento dei dati.

    Le piccole strutture sanitarie – il cuore pulsante della cura sul territorio – non sono digitalizzate a causa di costi proibitivi, complessità normative e mancanza di tempo.

    La startup Medigenium ha creato MeRis per risolvere questo problema alla radice.

    Quanto costa l’antidoto al “data poisoning” strutturale dell’IA medica? ZERO.
    Anzi regala tra 10 e 20 mila auro agli ambulatori che la scelgono.

    MeRis è un dispositivo che, fornito in comodato d’uso gratuito, si collega agli strumenti medici esistenti e genera dataset completi e puliti, l’antidoto al “data poisoning” strutturale dell’IA medica.

    Non stiamo lottando contro un’IA che sbaglia. Stiamo lottando per dare all’IA tutti i dati di cui ha bisogno per non sbagliare.

    La lezione di Anthropic è chiara: l’integrità del dato è tutto. La nostra missione è garantire che l’IA in medicina sia nutrita con il 100% della verità clinica, non solo con la parte comodamente digitale.

    Perché ogni paziente curato in un ambulatorio periferico ha il diritto di contribuire al progresso della medicina, e di beneficiarne.

  • Verso l’approccio AGNOSTICO

    Verso l’approccio AGNOSTICO

    Negli ultimi giorni Microsoft ha annunciato che non si affiderà più a un unico modello di intelligenza artificiale (OpenAI), ma integrerà anche Anthropic, aprendo la strada a un futuro multi-modello.
    Nell’articolo, questa scelta viene descritta esplicitamente come un approccio “agnostico”: non vincolarsi a un solo modello, ma sfruttare di volta in volta quello più adatto.

    https://thereview.strangevc.com/p/microsofts-model-switch-why-ai-middleware

    Tra le motivazioni principali spiccano due aspetti:

    • Flessibilità: la possibilità di usare il modello giusto per il compito giusto.
    • Evoluzione naturale: entro 12 mesi ogni prodotto enterprise AI supporterà almeno due modelli.

    Quando ho letto queste parole, ho sorriso.

    Perché questa stessa intuizione io l’avevo già colta alla fine del 2024. Dopo tanti rimandi, a marzo, sfruttando l’occasione di una demo, ho deciso di mettere mano a una prima bozza del progetto.

    Il 26 giugno ho completato l’MVP, che ancora oggi recita:

    “u-prompt: Ciao. Questo MVP serve a dimostrare che u-prompt è un sistema chatbot-agentico alimentato dall’intelligenza artificiale –>e agnostico<–, nel senso che durante la tua chiacchierata puoi decidere di –>utilizzare agenti differenti<– per rispondere a singole domande ad esempio per sfruttarne –>le caratteristiche speciali<–.”

    Nei giorni successivi, confrontandomi con alcuni amici, abbiamo deciso di portare avanti il progetto e fissato la data del go-live: 15 settembre. Una scelta fatta mesi prima che Microsoft rendesse pubblica la sua svolta.

    Domani, 18 settembre, la startup viene presentata a Palermo ai cantieri culturali alla Zisa nell’ambito di un evento sull’AI.

    La differenza?

    Mentre Microsoft annuncia oggi di voler lavorare con due modelli, in u-prompt abbiamo già messo insieme, per la prima volta, cinque modelli diversi in un unico prompt.

    Questo percorso – dall’MVP al progetto online – dimostra che non viviamo di parole, ma di fatti. E soprattutto dimostra, prepotentemente, una capacità di anticipare il futuro e affrontare le sfide senza paura.

    Interessati? -> hey[at]u-prompt.com

    Early adopters? -> u-prompt.com

  • Le Innovazioni dell’AI: GPT-5, Grok4 e il salto quantico di Claude

    Le Innovazioni dell’AI: GPT-5, Grok4 e il salto quantico di Claude

    E’ agosto e mentre noi ci prendiamo le ferie il mondo dell’intelligenza artificiale sta vivendo un momento di accelerazione straordinaria.

    Qui vi parlo del lancio delle innovazioni da parte dei principali attori del settore: OpenAI, xAI e Anthropic, l’ultimo dei quali fa il vero salto quantico. Vedremo anche le risposte di Google e DeepSeek. Ogni azienda ha scelto una strategia diversa, ma tutte spinte dalla concorrenza a dare di più.

    OpenAI e GPT-5: Quando la Trasparenza Diventa Spettacolo

    OpenAI ha rilasciato GPT-5 il 7 agosto 2025, rendendolo accessibile fin da subito come opzione predefinita per tutti gli utenti, anche quelli che usufruiscono del servizio gratuitamente.

    GPT-5 integra un sistema che decide in autonomia se fornire una risposta rapida o se “prendersi del tempo per pensare”, scegliendo l’approccio migliore per ogni richiesta senza che l’utente debba modificare alcuna impostazione.

    Questa funzionalità trasforma quello che era un processo noioso in una vera e propria esperienza visiva.

    Il ‘giochino di animazione’ di GPT-5 mostra all’utente esattamente come arriva alle sue conclusioni, rappresentando un perfetto esempio di gamification applicata all’AI: l’intrattenimento visivo compensa i tempi più lunghi necessari per il ragionamento.

    Caratteristiche chiave di GPT-5:

    • Ragionamento trasparente: mostra il processo di pensiero in tempo reale;
    • Riduzione delle allucinazioni: circa dell’80% inferiore di errori fattuali rispetto a o3;
    • Accessibilità totale: disponibile gratuitamente per tutti gli utenti.

    Grok4: La Sfida di Elon Musk

    xAI ha lanciato Grok 4 il 10 luglio 2025, e Musk lo ha presentato nel suo inconfondibile stile di affermazioni audaci: “l’intelligenza artificiale più intelligente al mondo”.

    Le principali innovazioni di Grok4:

    Sistema Multi-Agente con Grok 4 Heavy

    E’ un approccio collaborativo e rappresenta una novità assoluta nel settore, perché permette a diversi “cervelli artificiali” di lavorare insieme su problemi complessi. In Italia, SuperGrok Heavy costa 349€ al mese, il prezzo più elevato tra le soluzioni IA consumer ad oggi.

    Prestazioni da Record

    Ovviamente i risultati sui benchmark sono impressionanti:

    • Humanity’s Last Exam: outperforming Google’s Gemini 2.5 Pro and OpenAI’s o3 (high)
    • ARC-AGI-2: il risultato di 16.2% è quasi il doppio del migliore modello commerciale di AI

    Produzione di Immagini

    Anche Grok 4, come SORA o VEO è in grado di produrre immagini e video, questi ultimi però solo attraverso abbonamenti premium.

    Anthropic e Claude: Il Vero Salto Quantico

    Ma il vero “salto quantico” lo fa Anthropic. Claude che ora ha la capacità di ritrovare e referenziare le chat precedenti risolve quello che era il limite più frustrante di tutti i chatbot AI: la perdita di memoria conversazionale.

    Fine del Limite Fisico!

    Tradizionalmente, ogni conversazione con un AI ha un limite massimo di token (parole) che può processare e che, una volta raggiunto, richiede di ricominciare da capo perché il modello “dimentica” l’inizio della conversazione.

    Beh, adesso Claude non ha più questo problema perché può accedere a tutta la storia delle conversazioni passate:

    • Ricordare progetti sviluppati in conversazioni precedenti
    • Mantenere il contesto di discussioni complesse sviluppate in sessioni multiple
    • Continuare analisi iniziate settimane o mesi prima
    • Costruire una vera “memoria di lavoro” a lungo termine

    Questa funzionalità trasforma Claude in un vero assistente personale, in grado di mantenere il filo del discorso e l’evoluzione del pensiero dell’utente nel tempo.

    A) Quando aprite Claude vi viene chiesto se lo volete autorizzare a leggere le vecchie/altre conversazioni.

    B) Questo è il mio segreto per evitare le “allucinazioni” del modello (come per GPT-5 rispetto GPT-o3 😎).

    Google/Gemini

    Google è rimasta a guardare? Le risposte significative presentate al Google I/O 2025 e implementate durante l’estate si concentrano su tre pilastri: sistemi multi-agente, capacità agentiche e integrazione profonda nell’ecosistema Google.

    Gemini 2.5 Deep Think: Il Sistema Multi-Agente

    Il 1° agosto 2025, Google ha rilasciato Gemini 2.5 Deep Think, il suo primo sistema multi-agente che, come xAi-Grok4-Heavy genera multipli agenti AI per affrontare una domanda in parallelo, un processo che utilizza significativamente più risorse computazionali di un singolo agente, ma tende a produrre risposte migliori.

    La caratteristica più interessante di Deep Think è che è capace di produrre “risposte molto più lunghe” rispetto agli altri prodotti di AI in commercio.

    Infine una nota importante per chi fa commercio elettronico, viene introdotto lo Shopping agentico: funzionalità di checkout automatico che effettua acquisti quando il prezzo è giusto

    E DeepSeek?

    Nel 2025 è emerso un protagonista inaspettato che ha scosso le fondamenta dell’industria AI: DeepSeek, un laboratorio di ricerca cinese che ha dimostrato come l’innovazione possa nascere da limitazioni apparenti.

    Il modello è 100% gratuito in chat e poco costoso via API, si distingue per diverse caratteristiche innovative. Al momento in cui scrivo questo articolo non ci sono speciali annunci o rilasci in risposta alle mosse dei “concorrenti”.

  • Silver Startupper: Quando l’esperienza fa davvero la differenza (anche nell’AI)

    Silver Startupper: Quando l’esperienza fa davvero la differenza (anche nell’AI)

    Siamo abituati a immaginare gli startupper come giovani ventenni, entusiasti e privi di timori, ma oggi dati e realtà ci dicono qualcosa di diverso: l’età media dei fondatori di startup di successo si aggira sui 45 anni.

    Per anni, il messaggio diffuso è stato chiaro: “l’innovazione appartiene ai giovani”. Ma basta guardarsi intorno per capire che la narrativa sta cambiando. Herbert Boyer fondò Genentech, poi valutata 47 miliardi di dollari, quando aveva 40 anni; David Duffield avviò Workday a 64 anni, creando un colosso oggi valutato oltre 43 miliardi. Persino nel settore dell’intelligenza artificiale si inizia a comprendere che l’esperienza non è un ostacolo, bensì un vantaggio competitivo.

    I fondatori senior portano al tavolo qualcosa di unico: l’esperienza accumulata negli anni, una profonda conoscenza del mercato e, soprattutto, una gestione matura del fallimento. Dopo aver già sperimentato le insidie del mercato e vissuto sulla propria pelle almeno un insuccesso, chi supera una certa età affronta le nuove sfide con una consapevolezza diversa. Sa cosa evitare, quali rischi correre e soprattutto come affrontare i momenti difficili.

    Questa maturità si riflette direttamente anche nella gestione finanziaria: gli imprenditori senior hanno esperienza, sono più cauti con i capitali e dispongono di reti di contatti consolidate, aspetti cruciali per una startup che vuole crescere rapidamente.

    Eppure, nonostante questi vantaggi evidenti, in Italia persiste una sorta di discriminazione anagrafica. Le istituzioni puntano quasi esclusivamente sui giovani under 40 e sulle donne, ignorando completamente l’enorme potenziale dell’esperienza che possono apportare gli imprenditori maturi. Oggi, infatti, non esiste praticamente nessun incentivo pubblico italiano specificamente rivolto agli imprenditori che superano i 55 anni, mentre per donne e giovani sotto i 35 anni sono stati stanziati centinaia di milioni di euro tramite il PNRR.

    Personalmente, ho sperimentato quanto possa essere frustrante cercare risorse per avviare progetti innovativi nel nostro paese in generale e specialmente superati certi limiti di età, tuttavia, questa esperienza mi ha spinto ancora di più verso l’innovazione, portandomi a creare u-prompt, una piattaforma destinata a democratizzare l’accesso corretto e professionale all’intelligenza artificiale, la prima del suo genere in Italia e probabilmente in Europa.

    u-prompt ha già un chatbot multicanale che fa risparmiare almeno 40€ al mese ai professionisti, ma presenterà un agente-chatbot innovativo capace di replicare tutte le funzionalità avanzate dei principali strumenti AI presenti oggi sul mercato, ad una frazione del costo attuale. Questo consentirà ai professionisti del settore di risparmiare da un minimo di 100€ fino a 800€ al mese, mentre gli appassionati e gli hobbisti potranno finalmente accedere a tecnologie AI finora economicamente fuori dalla loro portata.

    L’MVP di questo agente-chatbot è già disponibile per chi vorrebbe investire nella start-up.

    Un tasso di successo del 70%
    Tra gli oltre 1,5 milioni di imprenditori nel mondo, quelli sopra i 50 anni hanno maggiori probabilità di avere successo rispetto alle controparti più giovani. Oggi negli Stati Uniti un’impresa su tre è avviata da qualcuno di 50 o più anni. Ma c’è di più. Se solo il 28% delle start up create dai giovani durano più di tre anni, per quelle accese da over 60 il tasso di successo è del 70 per cento. È quanto mette nero su bianco il rapporto “The Longevity Economy” realizzato dall’Aarp and Oxford Economics. «Poter fisicamente e psicologicamente lavorare significa anzitutto riconoscere il proprio contributo alla società di cui si è parte, poter produrre reddito, non gravare sulle pensioni e quindi sui giovani per dover finanziare i più vecchi. Significa anche avere capacità di spesa, permettere all’economia di rimanere in un ciclo attivo», precisa Palmarini, che prospetta un futuro ancora più determinato dalla generazione silver.

    Come correttamente riportato nell’articolo su Sole24Ore e non mi sento affatto escluso dalla corsa all’innovazione per via della mia età, al contrario, sono convinto che proprio l’esperienza maturata negli anni possa fare la differenza nella capacità di leggere il mercato, anticipare i bisogni degli utenti e costruire soluzioni realmente efficaci.

    u-prompt è il risultato di questa convinzione, un progetto che mostra chiaramente come il valore dell’esperienza, del fallimento e della resilienza possa tradursi in innovazioni concrete e di successo, sfidando ogni pregiudizio anagrafico.

  • Creare, non seguire – Lezioni dal mio percorso imprenditoriale

    Creare, non seguire – Lezioni dal mio percorso imprenditoriale

    L’innovazione parte da dentro, non dalla moda del momento

    Spesso si pensa che fare impresa significhi inseguire trend o replicare quello che “va di moda”. Ma come sottolinea bene Alessandro Benetton, “Penso che inventare qualcosa di nuovo (non innovativo ma nuovo) sia veramente difficile”

    Da anni, quando penso o immagino ogni mio primo progetto, parto dalla consapevolezza non sta nell’agganciarmi alle tendenze mainstream, ma nel creare valore da zero: osservando bisogni reali, sperimentando strade mai battute, e restando fedele alla mia visione.

    Benetton lo ribadisce: imprenditore significa avere coraggio, indipendenza e discontinuità, dissentire e costruire percorsi non lineari e per me ha ragione.

    Il momento della mia svolta è arrivato quando ho deciso di non seguire gli altri, ma di provarci da solo, imparando strada facendo, anche sbagliando.

    Le cose più significative sono nate così: da una consapevolezza profonda, dall’ascolto di stimoli esterni, da una fusione tra audacia e metodo, con l’intento di risolvere un problema e trarne il massimo vantaggio per tutti, azienda e cliente:

    Teche Rai
    DocuBox
    Flussu
    Medigenium
    u-prompt

    Se sei un imprenditore o stai iniziando un progetto, il consiglio è semplice: non inseguire la moda, ma coltiva qualcosa di tuo. Coltiva la discontinuità, resta fedele alla tua visione, e costruisci valore.

    I veri risultati arrivano quando intrecci coraggio e metodo, anche se ti dicono che sei “troppo avanti”, come fanno con me, non cambiare, combatti le menti vecchie!

  • L’innovazione in Italia

    L’innovazione in Italia

    Le intelligenze artificiali sono una innovazione e, come tale, sono usate per:

    1) dare la colpa dei propri problemi;

    2) immaginare un futuro cupo e pieno di mostri;

    3) promuovere expertise esistente solo su carta;

    e

    4) infine, nel loro giusto modo.

    È sempre stato così, in questa settimana è morto Nichi Grauso, innovatore, precursore, colui grazie alla quale l’Italia scoprì l’esistenza di un coso chiamato “internet” e giocoforza sono riaffiorati i ricordi di allora: se ne parlò subito come di una roba pericolosa e (non c’erano ancora i complotristi [errore voluto]) ad ascoltare sentire i giornalisti di allora, oggi saremmo dovuti essere degli individui abbrutiti, collegati a un PC per poter sopravvivere nei nostri bui loculi, senza alcun altro modo di comunicare tra noi.

    La realtà è ovviamente diversa.

    Faccio un esempio? Grazie alla mia _quarantennale_ esperienza nello scrivere software (e beh!), flulú, il sistema di l’accorciamento dei link più più più più più più smart dell’intera concorrenza mondiale, adesso è usabile anche in mandarino semplificato.

    E ci sono volute solo un paio d’ore.

    Come si fa? L’ho spiegato nel mio manuale