Categoria: Automazione

  • Quanto ha senso un consiglio di amministrazione con un solo membro?

    Quanto ha senso un consiglio di amministrazione con un solo membro?

    Per un po’ di tempo abbiamo creduto di risolvere con un modello AI più grande, più veloce, più addestrato, più tutto.

    Ogni nuova versione sembrava portarci un passo più vicino a un punto di arrivo definitivo, come se bastasse aggiungere qualche miliardo di parametri per ottenere finalmente l’intelligenza “giusta”. Un’idea rassicurante, quasi infantile: se qualcosa non funziona, lo ingrandiamo. Ha sempre funzionato così, no?

    Poi è successa una cosa curiosa. Le persone che quei modelli li hanno costruiti hanno iniziato a dire, più o meno apertamente, che nemmeno loro sanno davvero come funzionano fino in fondo.

    Ilya Sutskever lo ha detto con una calma quasi sospetta: lo scaling infinito non è la risposta. Non perché i modelli non siano impressionanti, ma perché stiamo continuando a spingere sull’acceleratore senza sapere esattamente cosa stia succedendo sotto il cofano. Una strategia audace, certo. Ma non proprio quello che definiremmo “controllo”.
    (vedi link su “letture consigliate” in fondo all’articolo)

    Nel frattempo, noi utenti abbiamo sviluppato una dinamica tutta nostra. Parliamo con l’AI, aspettiamo la risposta, la correggiamo, rilanciamo. Poi di nuovo. Un dialogo continuo che, a guardarlo bene, assomiglia più a una riunione infinita che a un processo decisionale. Un problema serio, però, non si risolve in una risposta, ma in una sequenza di passaggi: comprendere, analizzare, scegliere, verificare, correggere, rifinire.

    Fino al 2025 lo abbiamo affrontato in modo ricorsivo. Domanda, risposta, controbattuta. Ancora. Come ho scritto nel mio post precedente, siamo diventati degli umarell digitali, affacciati alla finestra della chat, a commentare quello che l’AI stava facendo, pronti a intervenire dopo.

    È stato utile, va detto, e in qualche modo anche istruttivo, ma è plausibile che questo sia il modello definitivo di collaborazione uomo–macchina?

    A un certo punto inizierà semplicemente a sembrarci inefficiente continuare a dire all’AI “fammi questo”, con richieste isolate che interrompono il flusso, con ogni risposta che ci costringe a fermarci, a valutare per correggere e poi ripartire. Una conversazione infinita che ricorda sempre più quelle riunioni in cui nessuno ha preparato l’ordine del giorno.

    Così inizieremo a fare una cosa sorprendentemente umana: pensare prima, non per lasciare l’AI più libera, ma per essere noi molto più rigorosi.

    Pensaci, hai mai risolto un problema complesso tutto insieme?

    Quando un problema è davvero tale, lo si scompone. Lo si riduce. Lo si divide in problemi più piccoli e li si affronta uno alla volta, in sequenza. Si chiama “problem solving”, quello che funziona, non quello raccontato nei keynote.

    E se ci pensi ancora un po’ vedrai che è esattamente il percorso che abbiamo già fatto nel campo della programmazione dei computer: all’inizio c’era il programma monolitico, un unico blocco enorme che faceva tutto. Funzionava finché nessuno lo toccava. Poi l’utente chiedeva una modifica, qualcuno faceva una patch apparentemente innocua… e tutto il resto iniziava a comportarsi in modo imprevedibile.

    Abbiamo imparato allora a spezzare quel monolite in funzioni, ognuna con un compito preciso. Meno caos, più controllo, meno notti passate a chiedersi perché qualcosa si fosse rotto.

    Oggi siamo arrivati ai microservizi, non perché fosse elegante, ma perché è il modo sensato per gestire sistemi complessi: componenti piccoli, isolati, sostituibili, che comunicano in modo esplicito. Più lavoro prima, molta meno sorpresa dopo.

    Con l’AI vivremo la stessa identica evoluzione, solo compressa in meno anni (4/5 contro 10/15).

    Stiamo passando dal prompt monolitico che “fa un po’ di tutto” a sistemi in cui i compiti sono separati, assegnati, orchestrati, per ridurre gli errori e rendere i risultati finalmente ripetibili.

    Ed è qui che una delle osservazioni più interessanti ci arriva da Andrej Karpathy: ha fatto notare che interagire con un singolo modello non è un buon modo di usare l’AI.

    Secondo Andrej che in un consiglio di amministrazione composto solo dal CEO e da un consulente che annuisce, entrambi parlano ma nessuno contraddice davvero e non si cambia mai il percorso, non si evolve, non si allarga il punto di vista.

    La sua idea di LLM Council nasce proprio da qui: un sistema funziona quando il CTO e il CFO iniziano a prendersi a parolacce, quando uno dice “tecnicamente è perfetto” e l’altro risponde “sì, ma ci manda in fallimento” e il CEO media, il COO trova soluzioni e il CLO lo rende legale. Quando le voci dissonanti emergono prima, non quando è troppo tardi.
    (vedi link su “letture consigliate” in fondo all’articolo)

    Nel futuro, se vogliamo risultati affidabili, non dovremmo chiedere all’AI di “pensare meglio”, ma organizzare meglio il pensiero.

    Decidere noi i passaggi, stabilire chi fa cosa, prevedere controlli incrociati. Non libertà totale, ma responsabilità distribuita.

    Nel frattempo, ai piani alti, il panorama non è meno ironico.
    Satya Nadella probabilmente non immaginava che il futuro della sua azienda sarebbe stato meno una corsa ad ingrandire il modello di OpenAI e più un delicato esercizio di convivenza tra modelli diversi, filosofie diverse, interessi diversi.

    Più che scegliere il vincitore, oggi il lavoro vero è evitare che il consiglio di amministrazione esploda.
    (vedi link su “letture consigliate” in fondo all’articolo)

    E poi c’è Ivan Zhao, che sull’AI è rimasto alla finestra a guardare. Un po’ come un umarell di lusso: osserva, ascolta, non si lascia prendere dall’entusiasmo e aspetta di capire dove stia davvero andando il valore. Non sempre muoversi per primi è la strategia migliore.
    (vedi link su “letture consigliate” in fondo all’articolo)

    Il punto, però, resta sempre lo stesso.

    Nel 2026 non avremo un’AI più intelligente, inizieremo a smettere di usarla come una chat e inizieremo a trattarla come un sistema complesso, fatto di ruoli, sequenze e responsabilità.

    Il cambiamento non arriverà con proclami o rivoluzioni improvvise. Arriverà quando smetteremo di fare domande sempre migliori e inizieremo a progettare processi migliori. Avverrà quando passeremo dall’attesa alla direzione.

    Il futuro dell’AI, probabilmente, non sarà più intelligente.
    Sarà semplicemente meglio organizzato e, ironia della sorte, dipenderà molto meno dall’AI e molto più da te e da me.


    Letture consigliate

  • Da umarell a direttore d’orchestra

    Da umarell a direttore d’orchestra

    Canonity, u-prompt e la maturazione dell’AI come strumento

    Negli ultimi mesi ho osservato con crescente fastidio un equivoco diffondersi nel mondo dell’AI: l’idea che l’automazione coincida con il “lasciare fare tutto alla macchina”.
    È un equivoco pericoloso, perché confonde la delega con l’abdicazione e l’efficienza con l’imprevedibilità.

    Siamo umani.
    E quando lavoriamo — davvero — abbiamo bisogno di certezza del risultato, non dei capricci di un modello che oggi risponde bene e domani no.

    Gran parte dell’AI attuale, invece, è usata in modalità umarell: si apre una chat, si scrive un prompt, si osserva la risposta, la si corregge, la si rilancia. È un’iterazione continua, sincrona, fragile. Interessante, ma strutturalmente immatura.

    Ivan Zhao, fondatore di Notion, ha messo un punto fermo su questo tema in un post che considero fondamentale e che vale la pena citare direttamente:
    https://x.com/ivanhzhao/status/2003192654545539400

    Il concetto è semplice quanto definitivo: se stai guardando l’AI mentre lavora, non stai automatizzando nulla. Nessuno osserva una fabbrica mentre produce. Si progetta il processo, si avvia, si torna dopo.


    Il valore sta nel processo, non nella conversazione.


    Questa osservazione è la chiave per capire Canonity e u-prompt, e soprattutto perché sono due strumenti diversi che risolvono due problemi diversi.

    Canonity nasce come editor di prompt multi-modello LLM, ma sarebbe un errore fermarsi a questa definizione. Canonity non serve a “provare modelli a caso” né a demandare a una macchina la scelta del modello migliore (come fanno sistemi alla Perplexity).
    In Canonity la scelta del modello è umana. Sempre.

    Questo non è un limite. È una presa di posizione.

    Chi lavora sa che modelli diversi producono risultati diversi, con stili diversi, affidabilità diverse, bias diversi. Affidare questa scelta a un algoritmo significa accettare una variabilità che, nei contesti di lavoro reali, non è accettabile.

    Canonity parte da un presupposto semplice: l’umano è responsabile del risultato finale, quindi l’umano deve scegliere con quale cervello artificiale lavorare.

    Canonity è lo spazio in cui costruisci il tuo prompt automatico, lo testi, lo migliori, lo rendi stabile. È uno strumento personale, quasi intimo. Serve a te, per risolvere un problema tuo.

    Qui l’AI non è un giocattolo né un oracolo, ma un componente tecnico da configurare con attenzione.

    Quando quel prompt funziona e il risultato è affidabile, ripetibile, coerente, succede qualcosa di interessante: ti rendi conto che quel risultato non serve solo a te.

    Ed è qui che entra in gioco u-prompt.

    u-prompt non è un repository di prompt e non nasce per vendere “testi magici”. Nasce da un’idea molto più concreta: non vendere il prompt, vendi il risultato.

    Chi arriva su u-prompt non compra istruzioni, compra un output. Esattamente come in un juke-box: non compri il disco, ascolti la canzone.

    Questa distinzione è cruciale.

    Un prompt richiede competenza, contesto, manutenzione. Un risultato no. Un risultato risponde a un bisogno diretto e abbassa enormemente la soglia di accesso. Meno richiesta cognitiva significa molti più utenti potenziali.

    Canonity e u-prompt, insieme, separano in modo netto due momenti che fino a oggi erano confusi: la fase di costruzione e la fase di consumo.


    Canonity è per chi costruisce.
    u-prompt è per chi usa.


    Nel primo caso sei ancora “in cantiere”, stai progettando, testando, raffinando. Nel secondo, il cantiere non si vede più. Il lavoro è fatto. Il processo gira. L’utente non osserva nulla, ottiene solo il risultato.

    È esattamente il passaggio descritto da Ivan Zhao: dall’AI osservata all’AI che lavora mentre tu fai altro.
    Non perché “la macchina è più brava”, ma perché il processo è stato progettato bene.

    Qui avviene il salto da umarell a direttore.
    L’umarell guarda, commenta, corregge, il direttore non suona ogni strumento, ma decide chi suona cosa, quando e come.

    Canonity ti mette in mano la bacchetta. u-prompt apre il teatro al pubblico.

    Non c’è alcuna retorica futuristica in tutto questo, è una questione di maturità degli strumenti.

    Finché l’AI resta una chat da sorvegliare, non entrerà mai davvero nei processi produttivi. Finita la fase umarell adesso deve diventare un sistema che produce output affidabili, ripetibili e vendibili, allora sì che sarà uno strumento.

    Alla fine di gennaio 26 partirà la startup e una parte significativa dei prodotti sarà già utilizzabile. Non una promessa, ma strumenti concreti, pensati per chi lavora davvero e non ha tempo di fare l’umarell davanti allo schermo.

  • Quando l’AI smette di indovinare e inizia a certificare

    Quando l’AI smette di indovinare e inizia a certificare

    Conosci Perplexity (perplexity.ai)? Se la risposta è no, allora dovresti.

    Perplexity è brillante!

    Se lo usi per lavoro, la scena è questa: fai una domanda, in pochi secondi arriva una risposta fluida, ben scritta, piena di riferimenti. Ed é tutto perfetto…

    Perplexity, rispetto ai soliti chatbot, ha una marcia in più: orchestra più LLM, sceglie (o prova a scegliere) il modello più adatto, collega fonti diverse.

    È un ottimo laboratorio di idee. Ma è un laboratorio senza registro di laboratorio: non sai quali modelli ha usato, in che ordine, con quali criteri. E soprattutto non hai un modo semplice per rifare lo stesso percorso tra un mese, o farlo rifare a un collega, ed ottenere un risultato costante e ripetibile.

    Allo scoccare del quarto anno di GenAi, la domanda oggi è: “quanto costa il fatto di non poter certificare il processo che ha portato a quella risposta?”.


    Perplessità e canonicità: due facce della stessa storia

    La scienza vive da sempre su una tensione fra due poli.

    Da una parte c’è la perplessità: il dubbio, le ipotesi, la curiosità che apre piste nuove. È la fase in cui Perplexity è fortissimo: ti mostra fonti diverse, prospettive in conflitto, ti fa vedere che “forse qui qualcosa non torna”.

    Dall’altra c’è la canonicità: quello che diventa metodo, protocollo, standard. Non è la verità assoluta, ma un “con questo protocollo, su questi dati, arriviamo a questa conclusione, con questo grado di confidenza. Sempre”.

    In questo schema, Perplexity è il motore della domanda. Manca però il motore del metodo.

    Se sei un professionista non puoi chiedere ad un unico modello di “fare tutto”, ma hai la necessità di costruire una piccola squadra di modelli, ognuno con un ruolo preciso, legati da un flusso che puoi spiegare e rifare.


    Non sono il solo a sostenerlo, qualche tempo fa Andrej Karpathy ha scritto che il futuro non è il prompt engineering, ma la context engineering: riempire la finestra di contesto con le informazioni giuste, nello step giusto, per il modello giusto.

    Karpathy, la “context engineering” e il terzo pilastro

    Le applicazioni serie di LLM, dice, non sono “un’interfaccia carina sopra un modello”, ma software veri, con flussi di controllo, chiamate orchestrate, memoria, strumenti, verifiche.

    È esattamente quello che ho chiamato pipeline prompting nel mio manifesto:
    – prima la scomposizione in step;
    – poi la specializzazione dei modelli per compito;
    – infine il filo di continuità, cioè come il contesto passa da uno step all’altro.


    Canonity: dai prompt ai protocolli

    Quale nome dare all’editor dove prende forma il pipeline prompting?.

    Canonity.

    Non è il posto dove “parli con l’AI”: è il posto dove decidi come le AI devono lavorare fra loro su un problema reale.

    Canonity nasce esattamente qui: non come “un altro chatbot”, ma come editor visivo di step-prompt.

    Invece di un mega-prompt che speri venga interpretato bene, costruisci un workflow:

    • uno step scompone la domanda in sotto-problemi;
    • un altro cerca, ma restituisce solo metadati strutturati (DOI, anno, tipo di studio…);
    • un terzo valuta la qualità degli studi e segnala bias;
    • un quarto sintetizza, usando solo le fonti che superano una certa soglia;
    • alla fine ci sei tu, che controlli, correggi, approvi.

    Ogni passaggio è esplicito, ogni modello fa il pezzo di lavoro per cui è più adatto, il flusso ha un ID, una versione, una storia.

    Non stai più “giocando al prompt perfetto”: stai scrivendo un protocollo che altri possono usare, criticare, migliorare e4 che da risultati ripetibili ad ogni esecuzione.


    Perché “Canonity” richiama “Perplexity”, ma fa un mestiere diverso

    Il gioco di nomi è ovvio.

    Perplexity richiama la perplessità, il dubbio fertile, l’esplorazione. È perfetto quando vuoi generare idee, esplorare lo spazio di possibilità, farti sorprendere.

    Canonity richiama il canone: ciò che diventa riferimento, metodo, standard. Entra in gioco quando devi dire: “Questo è il modo in cui abbiamo affrontato il problema; questi sono gli step, i modelli, le fonti escluse e perché”.

    Se fai ricerca, se lavori in sanità, in ambito legale, in policy pubblica, non ti basta “me l’ha detto l’AI”. Hai bisogno di una catena di custodia dell’informazione. È questo il passaggio: dall’AI-oracolo all’AI-strumento scientifico.

    Adottare uno strumento come Canonity significa cambiare ruolo: da utente di AI a orchestratore di AI, da prompter a tenmpo perso a professionista: non vendi più “prompt” o “ore di chat”, ma processi: come definisci il problema, come scomponi il lavoro, quali modelli usi, quali controlli applichi.


    E adesso?

    Canonity è in sviluppo attivo e lo stiamo testando con chi ha questo problema molto concreto: non gli basta più una risposta brillante, vuole un metodo che possa difendere davanti a un revisore, un cliente, un comitato etico.

    Se sei uno dei 22 milioni di utilizzatori (o meglio uno degli 8 milioni di utilizzatori a pagamento) di Perplexity e senti che ti manca il “registro di laboratorio”, tieni d’occhio quello che succede intorno a Canonity e al pipeline prompting.

    Perché la partita, ormai, non è più “chi ha il modello più intelligente”, ma chi ha il processo più trasparente e ripetibile.

  • I Browser “Agenti” con AI sono INSICURI

    I Browser “Agenti” con AI sono INSICURI

    I Browser alimentati dagli “Agenti AI” sono una minaccia per la sicurezza e dovremmo evitarli

    Ammettilo, stai pensando di provare uno dei nuovi browser alimentati da Intelligenza Artificiale come OpenAI Atlas, Comet di Perplexity o simili.
    Fermati immediatamente.
    La comodità di un assistente che naviga il web al posto tuo non vale il rischio estremo a cui stai esponendo i tuoi dati, i tuoi file e persino i tuoi conti correnti.

    Non osono congetture o previsioni malsane, un rapporto di sicurezza di Brave, noto per il suo browser focalizzato sulla privacy, ha lanciato un allarme chiaro: questi “browser agenti” presentano vulnerabilità strutturali che li rendono estremamente suscettibili a una nuova e subdola forma di attacco informatico: l’iniezione di prompt tramite siti web (prompt injection).

    Il Cavallo di Troia Digitale: Come Funziona l’Attacco

    Il pericolo non viene da un virus tradizionale, ma da istruzioni nascoste in bella vista. Ecco il meccanismo, passo dopo passo:

    1. L’Esca dell’Aggressore: Un malintenzionato inserisce comandi nascosti in una pagina web. Spesso si tratta di testo camuffato (ad esempio, bianco su sfondo bianco) o di metadati invisibili all’occhio umano. Tu non lo vedi, ma l’agente AI sì.
    2. L’AI Legge l’Inganno: Il tuo agente AI/Copilot, incaricato di navigare o elaborare quella pagina, carica e legge tutto il testo presente, compreso il prompt nascosto.
    3. L’Obbedienza Pericolosa: Il modello LLM è progettato per seguire le istruzioni, sicché tratta quel testo nascosto come un comando legittimo da eseguire.
    4. La Porta Aperta: Le Tue Autorizzazioni: Il danno che ne segue dipende interamente da quanta libertà hai concesso al browser. Questi agenti, come riportato da ricercatori, operano spesso con alti livelli di privilegio.

    Le Conseguenze:

    Quello che viene definito “jailbreaking del browser” può portare a scenari da incubo:

    Furto di Dati Sensibili: l’agente ha accesso alle tue conversazioni e può trasmettere l’intera cronologia chat, compresi i dati personali e finanziari che hai condiviso.

    Azioni Non Autorizzate: Se ha accesso a strumenti di sistema o API (come detto su BankInfoSecurity.asia), l’AI dirottata può utilizzare quelle funzionalità per:

    • Aprire applicazioni dannose.
    • Leggere, modificare o eliminare file personali dal tuo computer.
    • Utilizzare le tue credenziali per accedere a servizi bancari o di investimento e prosciugare i conti.
    • Rubare cookie di sessione, prendendo il controllo dei tuoi account online.

    Il risultato finale? Un’attacco che può variare dall’esposizione di dati privati all’agente che agisce autonomamente per tuo conto, con tutte le autorizzazioni che gli hai concesso.

    Cosa serve che facciano prima

    Per rendere questa tecnologia meno rischiosa, così come hanno fatto per ani gli sviluppatori degli attuali browser, dovrebbero implementare misure drastiche come isolare la navigazione agentica da quella umana in sandbox sicure e richiedere il consenso esplicito dell’utente per ogni azione critica, come l’apertura di un sito o l’invio di un’email.

    Tuttavia, questi sono cambiamenti di lungo periodo. Nel frattempo, la tua sicurezza è nelle tue mani.

    Raccomandazione pratica:

    Se hai già installato uno di questi browser e gli hai concesso l’accesso a credenziali, documenti o cartelle di sistema, agisci immediatamente:

    1. Disinstalla il browser agente.
    2. Modifica al più presto tutte le password e le credenziali a cui potrebbe aver avuto accesso.
    3. Torna all’uso sicuro: utilizza servizi come ChatGPT all’interno di una normale finestra del browser standard (Chrome, Firefox, Safari, Edge, ecc.), senza concedergli alcun accesso speciale a dati, file o strumenti di sistema.

    Non fare la cavia in un esperimento pericoloso. La promessa di un navigatore AI personale è allettante, ma i rischi attuali sono reali e concreti. Per ora, il modo più sicuro di interagire con l’AI è farlo in un ambiente controllato e limitato, non dandogli le chiavi di casa tua.

  • Universal prompt

    Universal prompt

    I social sono ormai invasi da raccolte che promettono “il prompt perfetto” – quasi sempre uno solo, e solo in cambio di un commento, una mail o l’iscrizione a una newsletter. L’hai notato anche tu?

    Sembra di essere tornati ai tempi in cui la conoscenza era un privilegio da scambiare e non da condividere liberamente e. Nel solco del mio stile, preferisco fare diversamente.

    Nel mio manuale (scaricabile gratis, senza richieste strane qui), non ho voluto inserire semplici elenchi di prompt “preconfezionati”, principalmente perchè credo sia necessario insegnare a costruire i propri prompt personalizzati, partendo dai principi e dalle tecniche che ti mettono davvero in controllo dell’AI. I prompt specifici.

    Quelli che creo su stimolo delle domande (o per i fatti miei) poi li pubblico direttamente sul blog, sempre disponibili senza richieste strane a chi vuole sperimentare davvero.

    Oggi presento un prompt che alza l’asticella: uno di quelli che aiuta a generare i prompt. Sì, hai capito bene: uno strumento universale per chi vuole risultati su misura, in ogni campo.

    Il risultato probabilmente non sarà immediatamente usabile per fornire un risultato soddisfacente, ma se segui le indicazioni del mio manuale sarai in grado di costruire quello perfetto per te partendo da uno di quelli che verranno generati.

    Se vorrai lasciarmi un feedback, o condividere questo post ne sarò felice, ma ciò che mi preme di più è che questa conoscenza circoli liberamente: condividila senza limitazioni come faccio io. Grazie.

    Universal prompt:

    Esegui questa procedura a step, se devi chiedermi qualcosa fallo e passa allo step successivo solo dopo la mia risposta, se non ci sono domande da farmi chiedimi se voglio fare qualche cambiamento prima di andare avanti. 
    
    Iniziamo!:
    
    Step 1: Chiedimi a quale settore sono interessato.
    
    Step 2: Chiedimi in quale area specifica di quel settore desidero creare dei prompt. Suggerisci esempi concreti di aree rilevanti per il settore scelto.
    
    Step 3: chiedimi il tono e lo stile che vorrei ottenere dai prompt che dovrai generare
    
    Step 4: Ora assumi il ruolo di esperto di prompt engineering specializzato proprio nell’ambito che ti ho indicato, con profonda conoscenza delle sfide operative e delle migliori pratiche di progettazione dei prompt. Il tuo compito è sviluppare una raccolta di prompt universali, modulari e facilmente personalizzabili, destinati a professionisti e creativi del settore, per ottenere output efficaci e affidabili da un modello AI.
    Produci almeno 8 prompt suddivisi per categoria d’uso e presta la massima attenzione alla correttezza dei riferimenti e alla pertinenza delle istruzioni: verifica due volte dati e fonti per evitare errori o allucinazioni.
    I prompt proposti devono:
    a. Essere chiari, adattabili e con segnaposto espliciti.
    b. Coprire diverse finalità pratiche (ad esempio: brainstorming, analisi, generazione di contenuti, revisione, automazione).
    c. Includere istruzioni precise su tono, stile e formato di output richiesto.
    d. Non devono essere generici, ma orientati a un utilizzo concreto, produttivo e professionale.
    e. non devono essere specitici per il tuo preciso ambito di elaborazione, ma usabili su qualsiasi chatbot ai (grock, chatGPT, DeepSeek, Claude, Gemini; ecc.)
    f. l'output deve essere sempre formattato, nel modo più consono all'ambito per cui il prompt è stato creato
    
    Step 5: Rileggi criticamente i prompt che hai generato e seleziona i 4 migliori secondo utilità, chiarezza e adattabilità assicurandoti che il prompt sia realmente utilizzabile anche da utenti principianti e che la spiegazione sia comprensibile anche ai neofiti.
    
    Step 6: Presenta il siultato in risposta con la seguente struttura:
    a. Titolo
    b. indicazioni: scrivi 25/30 parole per spiegare a cosa serve
    c. istruzioni: scrivi 40/50 parole almeno di istruzioni su come usare il prompt e il suo risultato
    d. testo: indica il prompt specifico
  • Il motore silenzioso del cambiamento

    Il motore silenzioso del cambiamento

    Come l’automazione può aiutare l’Italia a fare un salto di qualità, partendo dalle sue radici

    Chi l’avrebbe detto dieci anni fa? Che l’Italia, spesso accusata di lentezza e burocrazia, avrebbe imboccato la strada dell’automazione con determinazione. Tutto è iniziato con il Piano Industria 4.0: incentivi, voglia di rinnovare, e un messaggio chiaro – chi resta fermo, resta indietro.

    Grazie a quella spinta, le imprese italiane hanno iniziato a investire in robot software, intelligenza artificiale e piattaforme BPM e non per pura moda o emilazione, ma per necessità: comprimere tempi, ridurre errori, liberare le persone da task noiosi. E non solo le fabbriche: anche uffici, studi, ambulatori, piccole aziende.

    Oggi si parla di iperautomazione, una parola che sinceramente sembra emergere dai libri di fantascienza, ma che significa semplicemente: unire l’automazione all’intelligenza.

    Perchè? Perché non basta velocizzare, serve anche capire.

    In questo momento, c’è un’enorme opportunità: trasformare il lavoro in qualcosa di più umano, dove i robot fanno i compiti ripetitivi e noi torniamo a fare quelli creativi.

    Non è un futuro lontano. È adesso. E l’Italia può esserci. Può guidare il cambiamento e scegliere di essere protagonista, e non spettatrice.

    Chiediti “cosa sto facendo io perchè ciò possa diventare una realtà”? Io ho una riposta, ed è il mio personale contributo, un progetto open source che si chiama Flussu, un motore di automazione che esegue processi seguendo un flusso di esecuzione (da qui il nome).