Categoria: Audacia

  • AlexNet è tornata. E non per nostalgia.

    AlexNet è tornata. E non per nostalgia.

    Ogni tanto la tecnologia fa una cosa controintuitiva: invece di correre in avanti a testa bassa, si ferma, si gira e guarda indietro. Non per rimpiangere il passato, ma per ricordarsi come si costruiscono davvero le cose che durano.
    È esattamente quello che è successo a novembre 2025 quando il Computer History Museum, insieme a Google, ha deciso di rendere pubblico il codice sorgente originale di AlexNet.

    Il codice sorgente del 2012, quello che ha cambiato la storia dell’intelligenza artificiale.

    Non è un’operazione nostalgica, e non è nemmeno un regalo per chi vuole “rifare AlexNet oggi”. È un gesto culturale. È come dire: prima di discutere dell’ennesimo modello miracoloso, forse vale la pena tornare a vedere come nasce una vera discontinuità tecnologica.

    AlexNet nasce nel 2012 all’Università di Toronto, da Alex Krizhevsky, Ilya Sutskever e Geoffrey Hinton. Vince ImageNet in modo così netto da rendere improvvisamente obsoleti anni di approcci precedenti, dimostrando in un colpo solo che le reti neurali profonde non sono solo belle teorie: funzionano, scalano e cambiano le regole del gioco.

    Da lì in poi il deep learning diventa la norma, le GPU diventano strumenti scientifici e la computer vision prende una direzione completamente nuova.

    Ma oggi AlexNet non ci interessa per la sua potenza.

    Oggi confrontata con gli standard attuali. Ci interessa per un motivo molto più profondo: come è stata pensata.

    Il codice che oggi possiamo leggere su GitHub
    🔗 https://github.com/computerhistory/AlexNet-Source-Code

    Non è elegante, modulare, o “clean”. È scritto in CUDA C++ ed è brutalmente onesto. La memoria GPU viene gestita a mano, i layer non sono entità astratte ma strutture concrete, il training non è un loop astratto, ma è un flusso rigido e dichiarato. Non esiste separazione tra modello, training, preprocessing ed esecuzione: tutto è intrecciato, perché tutto fa parte dello stesso problema.

    Leggerlo oggi è quasi uno shock culturale per chi è cresciuto a colpi di framework. Qui non c’è nulla che ti protegga. Se qualcosa non funziona, non puoi incolpare una libreria: sei tu. Ed è proprio questo che rende il codice di AlexNet così prezioso. Ti costringe a capire perché una scelta è stata fatta, quali compromessi sono stati accettati, quali limiti hardware hanno guidato l’architettura.

    AlexNet, in altre parole, non era “solo un modello”. Era un sistema completo. Dataset, preprocessing, training su GPU, tuning manuale, gestione della memoria, flusso end-to-end. Tutto insieme. Nulla aveva senso da solo.

    Ed è qui che il collegamento con l’IA di oggi diventa quasi imbarazzante per quanto è evidente.

    Image

    Nel 2025 passiamo una quantità enorme di tempo a discutere su quale sia il modello migliore. Come se il problema fosse lì. Ma un singolo LLM, per quanto impressionante, soffre degli stessi limiti strutturali che avevano le singole reti neurali prima di AlexNet: non ha memoria vera, non ha visione di processo, non ha responsabilità sul risultato finale. Da solo, è fragile.

    Il valore reale oggi emerge quando smettiamo di ragionare in termini di “modello” e iniziamo a ragionare in termini di sistema. Quando progettiamo flussi, step, ruoli, controlli. Quando decidiamo quale modello deve fare cosa, in quale momento, con quale contesto e con quale verifica. Quando l’intelligenza artificiale smette di essere una risposta brillante e diventa un processo governato.

    AlexNet ci ricorda che le rivoluzioni non nascono da un singolo componente eccezionale, ma da un’architettura chiara. È lo stesso principio che oggi ritroviamo nei sistemi di orchestrazione multi-modello e, più in generale, in piattaforme come Canonity, dove il focus non è il prompt perfetto o il modello più grosso, ma la struttura che tiene tutto insieme. Non il singolo output, ma il flusso che lo rende affidabile.

    AlexNet non ci colpisce più per la potenza, ma per la lucidità. Per il fatto che, prima che tutto diventasse automatico, qualcuno aveva capito che l’IA non è magia statistica, ma ingegneria dei sistemi. Il rilascio del suo codice non è una celebrazione del passato: è un promemoria molto attuale.

    Se vogliamo davvero capire dove sta andando l’intelligenza artificiale, ogni tanto dobbiamo fare quello che fa questo repository: tornare alle fondamenta, sporcarci le mani con l’architettura e ricordarci che le vere innovazioni non nascono dall’ultimo modello, ma dalla capacità di mettere ordine nella complessità.

  • Da umarell a direttore d’orchestra

    Da umarell a direttore d’orchestra

    Canonity, u-prompt e la maturazione dell’AI come strumento

    Negli ultimi mesi ho osservato con crescente fastidio un equivoco diffondersi nel mondo dell’AI: l’idea che l’automazione coincida con il “lasciare fare tutto alla macchina”.
    È un equivoco pericoloso, perché confonde la delega con l’abdicazione e l’efficienza con l’imprevedibilità.

    Siamo umani.
    E quando lavoriamo — davvero — abbiamo bisogno di certezza del risultato, non dei capricci di un modello che oggi risponde bene e domani no.

    Gran parte dell’AI attuale, invece, è usata in modalità umarell: si apre una chat, si scrive un prompt, si osserva la risposta, la si corregge, la si rilancia. È un’iterazione continua, sincrona, fragile. Interessante, ma strutturalmente immatura.

    Ivan Zhao, fondatore di Notion, ha messo un punto fermo su questo tema in un post che considero fondamentale e che vale la pena citare direttamente:
    https://x.com/ivanhzhao/status/2003192654545539400

    Il concetto è semplice quanto definitivo: se stai guardando l’AI mentre lavora, non stai automatizzando nulla. Nessuno osserva una fabbrica mentre produce. Si progetta il processo, si avvia, si torna dopo.


    Il valore sta nel processo, non nella conversazione.


    Questa osservazione è la chiave per capire Canonity e u-prompt, e soprattutto perché sono due strumenti diversi che risolvono due problemi diversi.

    Canonity nasce come editor di prompt multi-modello LLM, ma sarebbe un errore fermarsi a questa definizione. Canonity non serve a “provare modelli a caso” né a demandare a una macchina la scelta del modello migliore (come fanno sistemi alla Perplexity).
    In Canonity la scelta del modello è umana. Sempre.

    Questo non è un limite. È una presa di posizione.

    Chi lavora sa che modelli diversi producono risultati diversi, con stili diversi, affidabilità diverse, bias diversi. Affidare questa scelta a un algoritmo significa accettare una variabilità che, nei contesti di lavoro reali, non è accettabile.

    Canonity parte da un presupposto semplice: l’umano è responsabile del risultato finale, quindi l’umano deve scegliere con quale cervello artificiale lavorare.

    Canonity è lo spazio in cui costruisci il tuo prompt automatico, lo testi, lo migliori, lo rendi stabile. È uno strumento personale, quasi intimo. Serve a te, per risolvere un problema tuo.

    Qui l’AI non è un giocattolo né un oracolo, ma un componente tecnico da configurare con attenzione.

    Quando quel prompt funziona e il risultato è affidabile, ripetibile, coerente, succede qualcosa di interessante: ti rendi conto che quel risultato non serve solo a te.

    Ed è qui che entra in gioco u-prompt.

    u-prompt non è un repository di prompt e non nasce per vendere “testi magici”. Nasce da un’idea molto più concreta: non vendere il prompt, vendi il risultato.

    Chi arriva su u-prompt non compra istruzioni, compra un output. Esattamente come in un juke-box: non compri il disco, ascolti la canzone.

    Questa distinzione è cruciale.

    Un prompt richiede competenza, contesto, manutenzione. Un risultato no. Un risultato risponde a un bisogno diretto e abbassa enormemente la soglia di accesso. Meno richiesta cognitiva significa molti più utenti potenziali.

    Canonity e u-prompt, insieme, separano in modo netto due momenti che fino a oggi erano confusi: la fase di costruzione e la fase di consumo.


    Canonity è per chi costruisce.
    u-prompt è per chi usa.


    Nel primo caso sei ancora “in cantiere”, stai progettando, testando, raffinando. Nel secondo, il cantiere non si vede più. Il lavoro è fatto. Il processo gira. L’utente non osserva nulla, ottiene solo il risultato.

    È esattamente il passaggio descritto da Ivan Zhao: dall’AI osservata all’AI che lavora mentre tu fai altro.
    Non perché “la macchina è più brava”, ma perché il processo è stato progettato bene.

    Qui avviene il salto da umarell a direttore.
    L’umarell guarda, commenta, corregge, il direttore non suona ogni strumento, ma decide chi suona cosa, quando e come.

    Canonity ti mette in mano la bacchetta. u-prompt apre il teatro al pubblico.

    Non c’è alcuna retorica futuristica in tutto questo, è una questione di maturità degli strumenti.

    Finché l’AI resta una chat da sorvegliare, non entrerà mai davvero nei processi produttivi. Finita la fase umarell adesso deve diventare un sistema che produce output affidabili, ripetibili e vendibili, allora sì che sarà uno strumento.

    Alla fine di gennaio 26 partirà la startup e una parte significativa dei prodotti sarà già utilizzabile. Non una promessa, ma strumenti concreti, pensati per chi lavora davvero e non ha tempo di fare l’umarell davanti allo schermo.

  • Verso l’approccio AGNOSTICO

    Verso l’approccio AGNOSTICO

    Negli ultimi giorni Microsoft ha annunciato che non si affiderà più a un unico modello di intelligenza artificiale (OpenAI), ma integrerà anche Anthropic, aprendo la strada a un futuro multi-modello.
    Nell’articolo, questa scelta viene descritta esplicitamente come un approccio “agnostico”: non vincolarsi a un solo modello, ma sfruttare di volta in volta quello più adatto.

    https://thereview.strangevc.com/p/microsofts-model-switch-why-ai-middleware

    Tra le motivazioni principali spiccano due aspetti:

    • Flessibilità: la possibilità di usare il modello giusto per il compito giusto.
    • Evoluzione naturale: entro 12 mesi ogni prodotto enterprise AI supporterà almeno due modelli.

    Quando ho letto queste parole, ho sorriso.

    Perché questa stessa intuizione io l’avevo già colta alla fine del 2024. Dopo tanti rimandi, a marzo, sfruttando l’occasione di una demo, ho deciso di mettere mano a una prima bozza del progetto.

    Il 26 giugno ho completato l’MVP, che ancora oggi recita:

    “u-prompt: Ciao. Questo MVP serve a dimostrare che u-prompt è un sistema chatbot-agentico alimentato dall’intelligenza artificiale –>e agnostico<–, nel senso che durante la tua chiacchierata puoi decidere di –>utilizzare agenti differenti<– per rispondere a singole domande ad esempio per sfruttarne –>le caratteristiche speciali<–.”

    Nei giorni successivi, confrontandomi con alcuni amici, abbiamo deciso di portare avanti il progetto e fissato la data del go-live: 15 settembre. Una scelta fatta mesi prima che Microsoft rendesse pubblica la sua svolta.

    Domani, 18 settembre, la startup viene presentata a Palermo ai cantieri culturali alla Zisa nell’ambito di un evento sull’AI.

    La differenza?

    Mentre Microsoft annuncia oggi di voler lavorare con due modelli, in u-prompt abbiamo già messo insieme, per la prima volta, cinque modelli diversi in un unico prompt.

    Questo percorso – dall’MVP al progetto online – dimostra che non viviamo di parole, ma di fatti. E soprattutto dimostra, prepotentemente, una capacità di anticipare il futuro e affrontare le sfide senza paura.

    Interessati? -> hey[at]u-prompt.com

    Early adopters? -> u-prompt.com

  • Creare, non seguire – Lezioni dal mio percorso imprenditoriale

    Creare, non seguire – Lezioni dal mio percorso imprenditoriale

    L’innovazione parte da dentro, non dalla moda del momento

    Spesso si pensa che fare impresa significhi inseguire trend o replicare quello che “va di moda”. Ma come sottolinea bene Alessandro Benetton, “Penso che inventare qualcosa di nuovo (non innovativo ma nuovo) sia veramente difficile”

    Da anni, quando penso o immagino ogni mio primo progetto, parto dalla consapevolezza non sta nell’agganciarmi alle tendenze mainstream, ma nel creare valore da zero: osservando bisogni reali, sperimentando strade mai battute, e restando fedele alla mia visione.

    Benetton lo ribadisce: imprenditore significa avere coraggio, indipendenza e discontinuità, dissentire e costruire percorsi non lineari e per me ha ragione.

    Il momento della mia svolta è arrivato quando ho deciso di non seguire gli altri, ma di provarci da solo, imparando strada facendo, anche sbagliando.

    Le cose più significative sono nate così: da una consapevolezza profonda, dall’ascolto di stimoli esterni, da una fusione tra audacia e metodo, con l’intento di risolvere un problema e trarne il massimo vantaggio per tutti, azienda e cliente:

    Teche Rai
    DocuBox
    Flussu
    Medigenium
    u-prompt

    Se sei un imprenditore o stai iniziando un progetto, il consiglio è semplice: non inseguire la moda, ma coltiva qualcosa di tuo. Coltiva la discontinuità, resta fedele alla tua visione, e costruisci valore.

    I veri risultati arrivano quando intrecci coraggio e metodo, anche se ti dicono che sei “troppo avanti”, come fanno con me, non cambiare, combatti le menti vecchie!